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A graphical representation of coaxial plane strains and volume changes 
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Abstract----Coaxial strain history, although not representing a common situation in rocks, can provide the 
opportunity to quantify very important parameters such as the amount of volume change occurring during 
compaction and tectonic deformation. In the case of coaxial superposition of compaction and tectonic plane 
strain, a co-ordinate system is defined with the x - y  plane lying parallel to bedding and the z axis normal to it, and 
with the x - z  plane corresponding to the plane in which tectonic strain occurs. Bulk strain data are represented on 
a simple deformation plot with axes 1 + ex, 1 + e z (where e x and e z are the finite extensions along the x and z axes 
of the co-ordinate system, respectively). With respect to the conventional Flinn diagram, the use of this plot for 
representing coaxial deformation paths brings several advantages, in that: (1) the magnitudes of the finite strains 
and their orientation with respect to the chosen co-ordinate system are represented; (2) the volume changes 
occurring during both compaction and tectonic strain are easily visualized for all the stages of progressive 
deformation; and (3) the transitions from the oblate to the prolate shape (and vice versa) of the finite strain 
ellipsoid during progressive deformation are shown continuously, without the artificial zig-zag pattern of the 
Flinn diagram. 

INTRODUCTION 

COAXIAL strain history is likely to represent an uncom- 
mon situation in most rocks deformed by natural tec- 
tonic processes. However, regions of coaxial strain 
within more complex tectonic structures are sometimes 
found (e.g. Reks & Gray 1982, 1983). Such areas assume 
a particular interest in that the simple strain geometry 
here makes it possible to quantify important parameters 
such as the volume changes preceding (i.e due to com- 
paction) and/or accompanying tectonic deformation 
(e.g. Oertel 1970, Beutner & Charles 1985, Wright & 
Henderson 1992). Different methods may be employed 
for the graphical representation of such deformation 
(e.g. Flinn 1962, Hsu 1966, Ramsay 1967, Hossack 1968, 
Owens 1974). On the conventional logarithmic Flinn 
diagram, coaxial superposition of tectonic plane strain 
(with or without volume change) and compaction pro- 
duces a complex deformation path, where total strain 
moves from the oblate to the prolate field and back to 
the oblate field during deformation (Ramsay & Wood 
1973, Sanderson 1976, Ramsay & Huber 1983). In the 
present paper, a simple deformation plot is discussed 
that can conveniently represent strain and volume 
changes occurring by this type of deformation sequence. 

DEFORMATION PLOT 

Since the deformations considered in the present 
study are all symmetric relative to bedding, a co- 
ordinate system is conveniently defined with respect to 
bedding. The chosen system has z normal to bedding and 
the x - y  plane lying parallel to the layering (Fig. la).  The 
finite extensions along the x, y and z axes of the co- 
ordinate reference frame are indicated as ex, ey and ez, 
respectively. They are distinguished from the principal 
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extensions of the finite strain ellipsoid (e 1 -> e 2 ----- e3) , 
which can assume different orientations with respect to 
the co-ordinate system. 

Compaction is here treated as a simple gravitational 
loading producing a volume loss A 0 (Ramsay & Wood 
1973). It results in a uniaxial strain with only one non- 
zero principal extension, a shortening (e3 < 0) parallel to 
the z axis. Tectonic strain occurs in the x - z  plane, and 
can itself be accompanied by an incremental volume 
c h a n g e  A i (Ramsay & Wood 1973). No stretch occurs 
along the y axis of the co-ordinate reference frame 
throughout the whole deformation (ey  = 0). Under these 
conditions, the three-dimensional deformation can be 
described by means of a two-dimensional plot having the 
axial lengths 1 + ex  as abscissa and 1 + e z as ordinate. 

The lines with equations 1 + ex = 1 + ez, 1 + e x = 1 

and 1 + ez = 1 divide the positive quadrant into six fields, 
each of them characterized by a different orientation of 
the principal axes of the finite strain ellipsoid (X > Y -> 
Z) with respect to the co-ordinate reference frame (Fig. 
lb). The features of the finite strain ellipsoid within the 
six different fields are summarized in Table 1. 

Fields 1 and 6 contain finite strain ellipsoids which 
have e 3 = 0, and positive el, e2. These ellipsoids lie 
completely outside the original unit sphere from which 
they were derived, and clearly have a positive dilatation 
A. Ellipsoids in fields 3 and 4 have el = 0, and negative 
e2, e3; they show negative dilatations, and lie completely 
inside the unit sphere. Ellipsoids in fields 2 and 5 have 
e2 = 0, e I positive and e 3 negative, and can show either 
positive or negative dilatations. The fields of positive 
and negative dilatation can be determined from the 
equation (1 + e l )  (1 + e2) (1 + e3) = 1 + A (Ramsay 
1967, p. 123). For e 2 = 0, we have (1 + el) (1 + e3) = 1 + 
A. In fields 2 and 5, this equation is equivalent to: (1 + 
e,) (1 + ez) = 1 + A (cf. Table 1). Ellipsoids with positive 
dilatation (A > 0) plot in the field (1 + ex) (1 + ez) > 1, 
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Fig. l. (a) Some stages of the deformation sequence considered in the text: a = initial stage; b = after compaction; c and d 
= progressive tectonic coaxial plane strain. Co-ordinate reference frame is shown. No stretch occurs along the y axis of the 
co-ordinate system during the whole deformation sequence (ey = 0). (b) The six deformation fields defined by the lines of 
equations 1 + e~ = 1 + ez, 1 + ex = 1 and 1 + e z = 1 (ex and e z are the finite extensions along the x and z axes of the 
co-ordinate system, respectively). The deformation ellipsoid for each of the six fields is schematically represented. The 
features of the finite strain ellipsoids within the six different fields are summarized in Table 1. (c) Fields of positive and 

negative dilatations and curves of percent volume change (AV). Fields of prolate (k > 1) and oblate (k < 1) strain. 

3.0 

those  with negat ive  di la ta t ion (A < 0) plot  in the field 
(1 + ex) (1 + ez) < 1 (Fig. lc) .  Di f fe ren t  ell ipsoids having 
the s ame  A value will p lo t  on a curve  of  the form:  (1 + ez) 
(1 + ex) = 1 + A. This  equa t ion  can be used to gene ra t e  a 
series of  curves  of  cons tant  A, which define the  a m o u n t  
of  vo lume  di la ta t ion involved  dur ing compac t iona l  and/  
or  tectonic  de fo rma t ion  (Fig. lc) .  

T h e  fields of  p ro la te  and  ob la te  strain ellipsoids can 
also be  def ined in the  d iagram.  Pro la te  strain is def ined 

T a b l e  1. Ma in  fea tu res  of  f inite s t ra in  e l l ipso id  in the  six fields of  
Fig. l ( b ) .  e 1 > e 2 > e 3 are  the  p r inc ipa l  ex t ens ions  of the  finite s t ra in  
e l l ipso id ;  e x ,  ey ,  ez, a re  the  finite ex tens ions  a long  the x,  y and  z axis 

of  the co -o rd ina te  sys tem,  r e spec t ive ly  

A x e s  
Va lues  of  of  the  finite of  the  co-o rd ina te  

F ie ld  e s t ra in  e l l ipso id  re fe rence  f rame  

e I = e x > 0 X para l l e l  to x 
e 2 = e z > 0 Y para l l e l  to  z 
e 3 = ey  = 0 Z para l l e l  to  y 

e l = e . > 0  X para l l e l  to  x 
e 2 = e y = 0  Y para l l e l  to  y 
e3 = ez < 0 Z para l l e l  to  z 

e l  = e y  = 0 g para l l e l  to  y 
e 2 = e  x < 0  Y para l l e l  to x 
e 3 = e x < 0 Z para l le l  to z 

e l = e y = 0  X para l le l  to y 
e 2 = e  z < O  Y para l le l  to z 
e 3 = e x < 0 Z para l l e l  to  x 

e l = e  z > 0  X para l le l  to  z 
e 2 = ey  = 0 Y para l le l  to y 
e 3 = e .  < 0 Z para l le l  to x 

e l = e  z > 0  X para l l e l  to z 
e 2 = e x > 0  Y para l le l  to x 
e 3 = ex = 0 Z para l l e l  to  y 

by the condi t ions k >  1, where :  k =  ( R x y -  1 ) / ( R r z -  1), 
R x r =  (1 + et)/(1 + e2), and R r z  = (1 + e2)/(1 + e3) (Flinn 
1962). Using the re la t ions in Tab le  1, the equat ions  for  
p ro la te  strain in t e rms  of  the plot  axes (1 + ex, 1 + ez) can 
be  obta ined:  

fields 1 and 4: 

fields 2 and  5: 

fields 3 and 6: 

1 + e~ < (1 + e x )  1/2 

1 + e ~ >  (1 + e~) -1 

1 + e z > (1 + ex) 2. 

In the s ame  way,  the equat ions  for  ob la te  strain (k < 1) 
are given by: 

fields I and 4: 

fields 2 and 5: 

fields 3 and 6: 

1 + e~ > (1 + e~) 1/2 

1 + e~ < (1 + ex) - I  

1 + ez < (1 + ex) 2. 

These  equat ions  define six di f ferent  fields, a l ternat ively  
charac te r ized  by  pro la te  and obla te  strain (Fig. ld) .  
These  fields can be r ep re sen ted  in the same  de fo rma t ion  
plot  toge the r  with the curves of  cons tant  A and the six 
fields defining magn i tude  and or ien ta t ion  of the princi- 
pal  strains to give the  final fo rm of  the d iag ram (Fig. 2a). 
T h e  lines with equa t ion  1 + e x = 1 + ez, 1 + ex = 1 and 
1 + ez = 1, which define fields 1-6,  also r ep resen t  
posi t ions  of  uniaxial  (pro la te  or  obla te )  strain. 

In a de fo rma t ion  sequence  of  the type cons idered  here  
(Fig. l a )  p ro la te  and ob la te  strains result  f rom the effect  
of  vo lume  changes  p reced ing  and/or  accompany ing  
p lane  strain. T h e r e f o r e ,  pro la te  and obla te  strain states 
are not  direct ly c o m p a r a b l e  to t rue  constr ict ion and 
flat tening (e.g.  R a m s a y  & W o o d  1973). 
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DISCUSSION 

An ideal deformation path on the 1 + ex vs 1 + e~ 
diagram is first shown by means of forward modelling. 
Consider an argillaceous sediment undergoing compac- 
tion with a 55% volume loss (A 0 = --0.55), followed by a 
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Fig. 2. (a) Deformation plot for the coaxial superposition of compac- 
tion and tectonic plane strain showing fields 1-6 (Table 1), curves of 
percent volume change (AV) and fields of prolate and oblate strain. 
Also shown is the deformation path resulting from the superposition of 
tectonic plane strain (accompanied by incremental volume loss occur- 
ring by displacements along the x axis) on a 55% vertical compaction. 
Note how the deformation path crosses the curves of percent volume 
change (AV) due to the effect of volume change during tectonic 
deformation. (b) Logarithmic deformation plot for the same defor- 
mation as in (a). (c) Three different natural deformation paths on the 
1 + e x vs 1 + e z plot: a = superposition of compaction and plane strain 
not accompanied by volume change (data from Oertel 1970); b = 
superposition of compaction and plane strain accompanied by volume 
change (data from Beutner & Charles 1985); c = superposition of 
compaction and tectonic deformation occurring exclusively by volume 

change (data from Wright & Henderson 1992). 

tectonic plane strain involving shortening along the x 
axis and stretching along the z axis of our co-ordinate 
system. Tectonic strain is also accompanied by an in- 
cremental volume loss A i occurring by displacements 
along the x axis (representing the shortening direction). 
The deformation path for this example is shown by 
means of both the deformation plot presented in this 
paper (Fig. 2a) and the logarithmic Flinn deformation 
plot having In R vz as abscissa and In Rxv  as ordinate 
(Fig. 2b). During compaction, the deformation in Fig. 
2(a) proceeds along the vertical line with equation 1 + ex 
= 1 from the point (1,1) to the point (1, 1 - 0.55) and is 
represented by a uniaxially oblate spheroid. On appli- 
cation of tectonic plane strain increments it enters field 3 
and is characterized by: el = 0, e2 < 0, e 3 < 0, X parallel 
to y, Y parallel to x and Z parallel to z (Table 1). As 
deformation proceeds, the path crosses the curve of 
equation 1 + ez = (1 + ex) 2 and enters the prolate field. 
When the uniaxial prolate state is reached (1 + ex = 1 + 
e~), the minimum (Z) and the intermediate (Y) axes of 
the finite strain ellipsoid interchange their positions and 
the deformation enters field 4. The deformation path 
returns to the oblate field when it crosses the curve of 
equation 1 + ez = (1 + ex) 1/2. When the uniaxial oblate 
state is reached again (1 + ex = 1) there is a new change 
over in the positions of the principal strain axes. The 
long (X) axis of the finite strain ellipsoid becomes 
parallel to the z axis of the reference frame and the 
deformation enters field 5, where it will remain for any 
further deformation increment of the same type. By 
comparing Figs. 2(a) & (b), the advantages of the simple 
1 + ex vs 1 + e z deformation plot can be appreciated. The 
deformation path in Fig. 2(a) can be continuously fol- 
lowed into the different fields of oblate and prolate 
strain. Magnitude and orientation of the principal finite 
strain axes with respect to the reference frame (i.e. 
bedding) are readily obtainable for any stage of the 
progressive deformation. Volume changes related to 
both compactional and tectonic deformation are also 
clearly represented on this plot, whereas they cannot be 
visualized in Fig. 2(b). In fact, Ramsay & Wood (1973) 
were able to represent volume changes on the conven- 
tional logarithmic deformation plot by adding a series of 
lines (parallel to K = 1) with equation In Rxv  = In Rvz  + 
In (1 + A). However, such a volume-change overlay is 
not applicable to a deformation sequence of the type 
considered here, in which the path moves from the 
oblate to the prolate field and back to the oblate field (cf. 
fig. 7 in Ramsay & Wood 1973; see also Flinn 1978). 

Three different types of possible deformation se- 
quences will be now discussed using finite strain data 
from naturally deformed rocks. 

(a) Superposition of compaction and plane strain not 
accompanied by volume change 

Oertel (1970) was able to decompose the observed 
strain in a sample of lapillar tuff from the English Lake 
district into a compaction component and a tectonic 
component. He found a 53% compaction (A 0 = -0.53)  
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and a tectonic plane strain of 2:1:0.5 (A i = 0),  with an 
approximately coaxial geometry of superposition (cf. 
Sanderson 1976). Pre-tectonic (compactional) defor- 
mation plots on the vertical line of equation 1 + ex = 1 at 
the point (1, 1 - 0.53). Since calculated tectonic strain 
occurs at constant volume (A i = 0), the deformation 
path for tectonic deformation is parallel to the curves of 
percent volume change in the diagram (Fig. 2c, path a). 
Total finite strain resulting from the superposition is 
strongly oblate, with a maximum extension parallel to 
the y axis of the co-ordiniate system (field 4, Table 1). 

(b) Superposition o f  compaction and plane strain 
accompanied by volume change 

Beutner  & Charles (1985), using both the shape of 
reduction spots and conodont  extensions, described a 
coaxial superposition of compaction and plane strain 
accompanied by large volume loss in the hinge zones of 
near-isoclinal folds in red slates from the Hamburg 
sequence, Pennsylvania. Mean total finite strain 
resulted from the superposition of a tectonic defor- 
mation of 1.41:1:0.41 (Ai = -0 .42)  on a 44% compac- 
tion. The deformation path (b in Fig. 2c), constructed 
assuming that volume loss during tectonic deformation 
occurred at constant rate,  crosses in this case the curves 
of percent volume change. The final state plots again in 
field 4, and is of oblate type. 

(c) Superposition o f  compaction and tectonic 
deformation occurring exclusively by volume change 

Considerable amount  of volume loss associated with 
pressure solution accompanying slaty cleavage formation 
has been shown by Wright & Henderson (1992) in 
Cambrian-Ordovician flysch sediments from Nova 
Scotia. Mean total finite strain recorded from fold hinge 
regions of coaxial deformation consists of a 60% tectonic 
shortening occurring entirely by volume loss, which was 
preceded by a 70% diagenetic compaction. The defor- 
mation path is in this case particularly simple, consisting 
of a vertical volume reduction due to compaction and of a 
tectonic shortening along the 1 + ex axis not compensated 
by any extension in other  directions (Fig. 2c, path c). The 
total finite strain is strongly prolate,  with a maximum 
stretch parallel to the y axis of the co-ordinate system 
and a vertical minimum extension (field 3, Table 1). 

CONCLUSIONS 

In rocks where coaxial superposition of tectonic plane 
strain (with or without volume change) and compaction 

can be documented,  bulk strain data can be conveniently 
represented on a 1 + ex vs 1 + e~ diagram (Fig. 2a). If 
additional information about the volume changes occur- 
ring during tectonic deformation is also available, the 
whole deformation path can be reconstructed. 

The simple I + e x vs 1 + e z deformation plot allows a 
complete description of the deformation,  in that it 
shows: 

(1) the orientation of the axes of the finite strain 
ellipsoid with respect to the co-ordinate system; 

(2) the magnitude of the principal strains; 
(3) the (prolate or oblate) shape of the finite strain 

ellipsoid; 
(4) the volume changes involved in the compaction 

and in the tectonic deformation. 
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